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THE ONLY CONVEX BODY WITH EXTREMAL DISTANCE 
FROM THE BALL IS THE SIMPLEX 

BY 
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ABSTRACT 

We can  ex tend  t h e  B a n a c h - M a z u r  d i s tance  to be  a d i s t ance  be tween  

n o n - s y m m e t r i c  se ts  by allowing affine t r ans fo rma t ions  ins t ead  of  l inear  

t r ans fo rmat ions .  It  was proved in [J] t h a t  for every convex b o d y  K we 

have  d(K, D) _< n.  It  is proved t h a t  if K is a convex b o d y  in R ~ such  

t h a t  d(K, D) = n,  t h e n  K is a s implex.  

For every two convex bodies K1 and K2 in R" we can define the distance 

between them as in [G]: 

dKx, K2 ~ f  inf{aJ 3z, y E R", T E GL(n) y + Kx C T(x  + 142) C ,x(y + K1)} 

(this is an extension of the Banach-Mazur distance for the non-symmetric case). 

Clearly if K1 is an affine transformation of K2 then dK1, I"(2 = 1. 

It was proved in [J] that for every convex body K we have dK, D <_ n and 

that dK, D < V ~ for every symmetric body K .  Already in [J] it was noted that  

these results cannot be improved because the simplex S and the unit ball of 11 

satisfy 

dS, D = n, dBa, D = v/'n. 
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In [MW] it was proved that every symmetric convex body K which satisfies 

dK, D = ~ has a section isometric to l~ where k is proportional to log n. In 

the non-symmetric ease we have more rigidity: the only extremal body is the 

simplex. Starting with the same approach as in [MW] we get stronger conditions 

on K and hence a stronger result. 

THEOREM 1: I/" K is a convex body in R" such that dK, D = n then K is a 

simplex. 

In order to prove this theorem we need the following two lemmas. 

LEMMA 1: Let K be a convex body and set D such that D is the minima/ 

volume ellipsoid containing K.  Let ( , ) be the inner product defined by D. 

Then for every unit vector u 

zEK ] n 

Lemma 1 isn't new. It was proved by John ([J]) as a central part  of the proof 

that dK, D <_ n for every convex body K.  We'll give here a simpler proof of the 

lemma which unfortunately doesn't give some additional information obtained in 

[J]. 

LEblbiA 2: Let K be a convex body such that dK, D = n. Let D be the minima/ 

volume ellipsoid containing K and 0 the center of D. Then 

The proofs of the lemmas are technical so we will prove first the theorem and 

prove the lemmas later. 

Proof of the theorem: Set D to be the minimal volume ellipsoid containing K 

and ( , ) the inner product defined by D. 

From Lemma 2 there are v l , . . . ,  vr and a l , . . . ,  ar such that [[viii2 =n'X v ' , E O K  

and 
r l- 

O = E aivi, ai >_ O, Eai=l" 
i = 1  i = 1  

By Carath~odory's theorem we can assume that r < n + 1. 

Set wi = -nv i ;  we will prove that K=  cony{w1, . . . ,  wr}. For this purpose we 

will first prove that wi E K.  
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For every common point v of the boundary of a convex body K and a sphere 

contained in K we have 

V x E K  (z, v) _< (v, v). 

So for every i < r 
1 

Vz E K (x, vi) < (vi, vi) = n- ~. 

Therefore 
1 

(1) Vi<_r W ~ K  - -  <_ (z ,w, ) .  
n 

We know that 11~,112 = n .  Ilvfl[2 = 1. Using Lemma I by setting u = wi we get 

Our set K is compact so we can find zi E K such that 

(Zi~ Wi) 

The vector wi is a unit vector and 

Schwartz inequality we get 

sup(wi,  x) ~_ 1. 
zEK 

zi E K C D, therefore by the Cauchy - 

(z , ,~ , , )  < Ilzfll2" 11~,112 < 1 . 1  = 1. 

Thus 

( z .  w~) = I 

and clearly zi = wi. This means that for every i, wi E K. 

We know that 
r 

and therefore 

0 ----- E CtiVi 
,=1 

r 

E a i w i = - - n ' O = O .  
i=1 

For a fixed k we have 

r 

o= (O,w~)= ~ ~,<w,,~o~)= ~k(~,~> + 
i=l 

ai(wi, wk) 
i=l,i~k 

= a k +  
r 

o,<w,, wk>. 
i=l,i~k 
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Since for every i, Wi E K,  we have by (1) 

( 2 )  (wi,wk) > 

Therefore 

1 
- - - - o  

n 

i = l , i ~ k  

a k + ( 1  ak) ( 1 )  n + l  1 
= - -  • - -  = a k - - - -  

n Tt 

and this implies 
1 

(3) ak < 
n + l  

We have r 1, r < and therefore E i = I  ai  = n + 1 

1 n + l  
1 =  a i < r  < - -  

-- n + l  - -  n + l  
i = l  

= 1 ,  

hence 

r = n + l ,  

1 
Vk, ak = n + l  

This means that  (3) is an equality and therefore (2) is an equality. 

So we have w l , . . . ,  w,+;  such that  ]]will2 = 1 and for every i ~ k, (w;, wk) = 

- 1 / n .  

Set S = cony{w1,. . .  ,w ,+ l} .  Then S is the simplex. K is convex and wl e K 

therefore S C K.  We only have to prove that K C S. 

Let x ~ S; since 0 = Y~-;=I alwl E S there exists 0 < ,~ < 1 such that Ax E 

OS. Therefore ~x is a convex combination of only n vectors in { w ] , . . . ,  w,+l} .  

Without loss of generality we can assume that these vectors are w l , . . . ,  w, .  Let 

n n 

i = 1  i = 1  

Then 
1 1 " 

<~'~"+'> = X <~'~"+~> = X ~ b,<w~,~.+x> 
i = l  

1 " 1 )  1 1 1 = ~ ~ ' ( -  .= = ~ ' ( - ; )  < - - .  
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and therefore by (1) z ~ K. So K C S and we have 

K = S .  II 
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We now prove our lemmas: 

Proof of Lemma 1: Set 

zEK 

We have 
g C { r E D  [ - a  _< (x,u) _< ~/ }dejA. 

We wiU tlnd an ellipsoid E that contains A and therefore contains K. The volume 

of E will have to be greater than or equal to the volume of D (since D is the 

minimal volume ellipsoid containing K) and this wiU prove that a~ />  1 The __ ~ .  

drawing will help understanding how this ellipsoid is defined. 

~el I I l u - -  el 

E 
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We can assume u = el; we Call also assume that  ,8 > a > 0 ( if a > ,8 we can 

use - u  instead of u; if a = ,8 we can use the proof  for , 8 + 6  instead of ,8 for some 

small 6; f o r .  < 0 u s e .  = 6 for some small 6). 

Set E~ to be an ellipsoid with center at eel for small e > 0: 

n 

Ee---~ { X I al (g) (Zl - -~)2-[ -a2(g)Ex  2 ~_ 1} 
i=2 

and set .1(~),.2(~) to be such that the vectors 

y = (,8, ~/1 - ,82, 0 , . . . ,  0), 

z = ( - . ,  v C -  . 2 , 0 , . . . ,  o) 

are in OBj. 
This  means  tha t  a l(e) ,  a2(e) are determined by the following equations:  

al(g)(--" - -  C)2 jr. a2(f)( 1 _ _  . 2 )  .~- 1, 

a1(~)(,8 -- ~)2 + "2(~)(1 -- ,82) = 1. 

By a simple calculation we can obtain  

.1(01 = .2(0) - 1, 

a~(0)  = 21 - a]~ 

o , , 8  

.~(0) = -2,8 

We'll show tha t  A C E ,  for small enough • > 0. Indeed for every x E A we have 

llxU2 _< 1 and - a  _< xl  _< ,8. Hence 

yt  

.~(~)(x~ - ~)2 + .2(~) ~ x~ = . ,(~)(~,  - ~)2 + . 2 ( ~ ) ( 1 1 ~ 1 1 ~  - ~)  
i=2 

_< a~(~)(~, - ~)2 + .2(~)(I - x~). 

Define 

al(e)(t - ~)2 + .2(e)0  - 0 "d ~.(t). 

~e(t) is a polynomial  of degree 2. aa(e) and a2(e) were chosen so tha t  

~ . ( - . )  = ~,(,8) = I. 
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Differentiating &(0) with respect to E we get 

Hence for small E > 0 we get that L,(O)  < eo(0) = 1. Thus for every -a I t I /3 
we have e,(t)  < 1 and hence 

This proves A C E,. 

Since K C A C Ee 
have 

and therefore 

i=2 

and D is the minimal volume ellipsoid containing K we 

vol(D) < vol(E,) 

Since v(0)  = 1 we have 

F l e = o  s 0. 

We can calculate 

-- a'(e) - a; (c)a2 + a1 ( ~ ) ( n  - 11~2 (&In-'4 (6) 
de 

therefore 

2 =- 
2 

(1  - a@ - ( n  - 1)ap)  = - (1  - n a p ) .  
P - a  P - a  

Since we took /3 > a we have 



! D  

P r o o f  o f  Lemma 2: 

l e m m a .  
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- - ,  

\ z E K  z E K  --  rt 

The drawing will illustrate some of the definitions in the 
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Thus 

~ D  E 

Let (-, .) be the inner product defined by D (the minimal volume ellipsoid) and 

I1" 112 the norm defined by this inner product. 
1 If O K  N ~D = 0 then for some small 6 > 0 we would have (1 + 6)-~D C K and 

n 1 therefore dK,  D < ~ . Thus aK n ~D is not empty. 
Suppo.~ that 0 ¢ conv(OK n ~D). Let u e cony (0K n -~D) be the vector 

with the minimal norm. Set p = Ilull~ and set ea such that u = - p c 1  (p > O, 
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11~1112 = 1). it is clear that  under these definitions 

(4) 

We will show that  under these conditions we can find an ellipsoid E and 6 > 0 

such that  

(1 + 6) J 'E C K C E 
n 

and therefore dK,  D <_ a-~ < n, which is a contradiction. 

For every ¢ > 0 set E ,  to be an ellipsoid with center at eel (¢ will be determined 

later): 

1 1 n 
E, aed {~l ~ ( ~ ,  - ~1~ + x--¢-~ ~ , ~  < 1}. 

i=2 

By direct computat ion 

(5) g c D c E . .  

We will show that  for some small e > 0 we have ! E  C int(K).  In order to 
n £ 

prove that  we need the next two sublemmas: 

SUBLEMMA 2.1: Under the definition o f  u and p we have 

1 p > 
n2" 

1 1 SUBLEMMA 2.2: For every ~ > 0 and for every  x such that  z E ~Ec and Ilzll2 _> 
we have  

(x, el) >_ - 1 +  1 n2. 

We'll prove these sublemmas after the proof of the lemma. 

Combining Sublemma 2.1 and (4) we get 

vx ~ c o n y  a g  n D (x, ex) = - x , u )  <_ - u ,u )  = - p  <_ - n2. 

1 ! D Since gE0 = n and the transformation ~ ~i, Ee is continuous we get that  for 

every/~ > 0 there is ~ > 0 such that  

I E 1 w ~ O g n -  , ~  (~,~)_<-D.+~,. 
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We know that !D. C K; therefore if x • OK then Ilzll= _ > n'l" applying Sublemma 

2.2 we get that 

V z c o K n l E ,  (z, el) > _1 + V/7 1 
n - -  n 2"  

Taking/J > 0 such that -.At +/~ < - 1  + ~ / 1 -  ~ we will get contradicting 

inequalities for every x 6 OK r3 ! E  and thus n c 

OK O1-E, = ¢. 
rt  

Since 0 • K and 0 • !E we must have n 

Hence for some small 6 > 0 

IE, c int(K). 
n 

(I + 6)nl--E, C K. 

Combining this with (5) we get 

(1 + 6) lEe  C g C E,  
TI 

and therefore 
rl  

dK, D < -i--~ < n, 

which contradicts the conditions of the lemma. 

Therefore we must have 

0 E c o n v ( O K I q l D ) .  

Proof of Sublemma 2.1: We know that 

r r 

(6 )  u = > 0, o ,  = 1, 
i = 1  i = 1  

vi • OK f3 1D. 
n 

Set wi = -nvi ,  we will prove that wi • K (we will use the same arguments as 

in the proof of the theorem). For every common point v of the boundary of a 

convex body K and a sphere contained in K we have 

w • x (~,,,) < (,,,,,). 
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So for every i _< r 

1 
(7) (X, Vi) ~__ (Oi, Vi) = n-- i 

and therefore 
1 1 

( z ' w d  > ( - " ) ~  = - - ' n  

Then by Lemma 1 (wi is a unit vector) 

sup(x, wi) >_ 1. 
zEK 

Therefore there exists zi E K such that  

(zi, wi) > 1 

but zi E K C D and Ilwill2 = 1 and hence zi = wi. 

So for every i, we get that  wi E K .  

Applying (7) for some wj E K we get that  

1 
(wj ,v i )  < n- ~ 

and hence 

(s) 

Using (4) and (6) we get 

( u , u )  = 

and hence for every i _~ r 

1 
(vi, vi) > n 3. 

1" f" 

E >- 
i=1 i=1 
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Thus all the vi's are in the same n - 1 dimensional hyperplane. Using Carath~o- 

dory's  theorem we can have r < n. Hence there exists some k such that  a t  > 1 

Using this k in the previous equality and using (6) we have 

T r 

i=1 i=1 

r 

i=l,i#k 



348 O. PALMON Isr. J. Math. 

using (8) 

by our choice of k 

Therefore 

and the sublemma is proved. 

i=l,i~k 

= ak-~ - ~(I - .k) = ak( + ~) - -- 

1 1 1 1 1 
> -~(-~ + -~)  - -~  = ,~.  

1 
P>- n2 

| 

1 
n 3 

Proof  of Sublemma 2.2: 

Set xi = (x, ei). Then 
" 1 

i=1 

1 I_._I___ ~-~ x2 
(1 "~- g) 2,(xl  --  ~)2 ~_ ~-~ , 

1 + $ i----2 

Combining the last two inequalities we get 

1 1.__~_(1 x~) 
( 1 + e ) 2 ( x l - ¢ ) 2 + 1 + ~  n 2 -  

And by simple calculations 

1 Let z be a vector such that nx]Iz >_ ~ and x • -~E,. 

1 6 
0 < x ~ + 2 z l + m +  - e .  

1 < 
n2"  

1 < 
n2" 

Since .-~ - ¢ <_ 0 we have 

1 
0 _< x~+2z~+~7. 

The roots of the ~ + 2~, + b ~e -1 ± ~ -  ~ ~o we have 

x 1 _ < - 1 -  1 - ~ -  or x 1 > _ - 1 +  1 - ~ 7 .  

Since 1 z e ~ E ,  we Zl > so c lear ly  have 1. --n 

zl _> - 1  + n2 

and the sublemma is proved. | 



Vol. 80, 1992 CONVEX BODIES 349 

ACKNOWLEDGEMENT: The author would like to thank E. Gluskin and V.D. 

Milman for long discussions and their help in editing the manuscript. 

References 

[J] 

[Mw] 

B. Gr~nbaum, Measures of symmetry for convex sets, Proceedings of Symposia 

in Pure Mathematics. Convexity VII (1963), 233-270. 

F. John, Extremum problems with inequalities as subsidiary conditions, Courant 

Anniversary Volume, New York, 1948, pp. 187-204. 

V.D. Milman and H. Wolfson, Minkowski spaces with extremal distance from 

the Euclidean space, Isr. J. Math. 29 (1978), 113-131. 


