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THE ONLY CONVEX BODY WITH EXTREMAL DISTANCE
FROM THE BALL IS THE SIMPLEX
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ABSTRACT

We can extend the Banach-Mazur distance to be a distance between
non-symmetric sets by allowing affine transformations instead of linear
transformations. It was proved in [J] that for every convex body K we
have d(K, D) < n. It is proved that if K is a convex body in R® such
that d(K, D) = n, then K is a simplex.

For every two convex bodies K; and K; in R™ we can define the distance

between them as in [G]:
dKy, Ky & inf{a| 3z,y € R",T € GL(n) y+ K1 C T(z + K3) C a(y + K1)}

(this is an extension of the Banach-Mazur distance for the non-symmetric case).
Clearly if K; is an affine transformation of K; then dK;,K; = 1.

It was proved in [J] that for every convex body K we have dK,D < n and
that dK, D < /n for every symmetric body K . Already in [J] it was noted that
these results cannot be improved because the simplex S and the unit ball of [;

satisfy
dS,D = n, dBy,D = v/n.
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In [MW] it was proved that every symmetric convex body K which satisfies
dK,D = y/n has a section isometric to I} where k is proportional to logn. In
the non-symmetric case we have more rigidity: the only extremal body is the
simplex. Starting with the same approach as in [MW] we get stronger conditions

on K and hence a stronger result.

THEOREM 1: If K is a convex body in R™ such that dK,D = n then K is a

simplex.
In order to prove this theorem we need the following two lemmas.

LEMMA 1: Let K be a convex body and set D such that D is the minimal
volume ellipsoid containing K. Let ( , ) be the inner product defined by D.

Then for every unit vector u

1
=i > -,
(supter) - (- o) 25
Lemma 1 isn’t new. It was proved by John ([J]) as a central part of the proof

that dK, D < n for every convex body K. We'll give here a simpler proof of the

lemma which unfortunately doesn’t give some additional information obtained in
(9]
LEMMA 2: Let K be a convex body such that dK,D = n. Let D be the minimal
volume ellipsoid containing K and 0 the center of D. Then
1
0 € conv (;D n aK) .

The proofs of the lemmas are technical so we will prove first the theorem and

prove the lemmas later.

Proof of the theorem: Set D to be the minimal volume ellipsoid containing K
and (, ) the inner product defined by D.

From Lemma 2 there are vy,...,v, and a,. .., a, such that |jv;||; = %, v; € 0K
and
T r
0=za;v,~, a; >0, Ea;:l.
i=1 i=1

By Carathéodory’s theorem we can assume that r <n + 1.
Set w; = —nv;; we will prove that K= conv{ws,...,w,}. For this purpose we
will first prove that w; € K.
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For every common point v of the boundary of a convex body K and a sphere

contained in K we have
Ve K (z,v) < (v,v).
So for every i < r .
Vz e K (z,vi) < (vi,v5) = y

Therefore )
(1) Vi<r Vze K - < (z,w;).

We know that ||jw;||z = n - ||vi]l2 = 1. Using Lemma 1 by setting u = w; we get

(_ (“%)) sup(wi,2) 2 .

Our set K is compact so we can find 2; € K such that
(2i,w;) = sup (wj,z) > 1.
zeK

The vector w; is a unit vector and z; € K C D, therefore by the Cauchy -
Schwartz inequality we get
(zi,wi) <|lzillz - lwill £1-1=1.

Thus

(zi,wiy =1
and clearly z; = w;. This means that for every i, w; € K.

We know that .
0= Z a;v;

=1

and therefore .
Za.-w.- =-n-0=0.
=1

For a fixed k we have

r r

0=(0,w;) = Zaa(wi,wk) = ap(wg, wi) + Z a;i{wi, w)

i=1 i=1,i%k

=ar + E a.-(w,-,wk).

i=1,i#k
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Since for every i, w; € K, we have by (1)

1
2 (wi,wg) = ——.

n
Therefore

n+1 1
ap — —
n n

r
1 1
02ac+ 3 ail-2) = a+(l-a)(-3)=
i=1,i#k
and this implies

1
< .
(3) % <

We have ¥_;_, @i = 1,7 <n +1 and therefore

. 1
1=Za.~$r ! $n+ =1,

= n+l " n+l
hence
r=n+1,
1
Yk =—
» Ok n+1
This means that (3) is an equality and therefore (2) is an equality.
So we have w1,...,Wn41 such that |jw;)l2 = 1 and for every i # k, (w;, wx) =
—1/n.
Set S = conv{wy,...,Wp+1}. Then § is the simplex. K is convex and w; € K

therefore S C K. We only have to prove that K C S.
Let z ¢ S; since 0 = > [_, a;w; € S there exists 0 < A < 1 such that Az €
0S. Therefore Az is a convex combination of only n vectors in {w1,...,Waq1}.

Without loss of generality we can assume that these vectors are wy, ..., w,. Let
n n
Az = Zbiw,', Zbg =1.
i=1 i=1
Then

1 1¢
(a:,w,.+1) = X(/\z,w,ﬂ.l) = X Zb.-(w,',wnﬂ)

i=1
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and therefore by (1) z ¢ K. So K C S and we have

K=25. ]

We now prove our lemmas:

Proof of Lemma 1: Set

B = zsg}]z(z,u), a= —zlxg((z,u).

We have

KcCc{zeD| —a < (xu) < p}¥A

We will find an ellipsoid E that contains A and therefore contains K. The volume
of E will have to be greater than or equal to the volume of D (since D is the
minimal volume ellipsoid containing K') and this will prove that a8 > % The
drawing will help understanding how this ellipsoid is defined.

Y B
L
Yy
D—s
£€e u=2e€
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We can assume u = e;; we can also assume that 8 > a >0 (if @ > § we can
use —u instead of u; if @ = f we can use the proof for § + ¢ instead of g for some
small §; for a < 0 use a = § for some small 6).

Set E. to be an ellipsoid with center at ee; for small € > 0:
E.={ z| a(e)(m1—€) +axe)) 2! < 1}
i=2
and set a;(€), az(¢€) to be such that the vectors

y=(ﬂ7 1—:82’09"'70)’

z=(-a,v/1-0a2,0,...,0)

are in OF,.

This means that a;(€), az{¢) are determined by the following equations:
a1(e)(—a—e)? + ax(e)(1 - a?) =1,

ar(e)(B — &)’ + aa(e)(1 - £%) = 1.

By a simple calculation we can obtain

01(0) = 02(0) = 1,

! 1-
a’l(o) =2 ﬂ _aaﬂ,
al(0) = —2 ;— —.

We’ll show that A C E, for small enough € > 0. Indeed for every z € A we have
[[zllz £1 and —a < z; < 8. Hence

n

ar(e)(z1 — ) + axle) )2} = a(e)(zr — &) + az(e)(|lzl} ~ 23)

< ai(e)(e1 — &) + ar(e)(1 - 22).

Define
a1(e)(t — €)% + az()(1 — 1) & £ (2).

£.(t) is a polynomial of degree 2. a;(€) and az(€) were chosen so that

£e(—a) =£(8) = 1.



Vol. 80, 1992 CONVEX BODIES 343

Differentiating £.(0) with respect to ¢ we get

9¢,(0)

e =ay(0) < 0.

e=0

Hence for small € > 0 we get that £,(0) < £,(0) = 1. Thus for every —a <t < g
we have £.(t) <1 and hence

1)1 — ) +az(e) Y 2? <Le(z1) < 1.
i=2
This proves A C E,.
Since K C A C E, and D is the minimal volume ellipsoid containing K we
have

vol(D) < vol(E,)

and therefore

12 (B2 —a a0 o)

Since v(0) = 1 we have
dv(e)

<0.
Oe <0

e=0

We can calculate

31:% = dj(€)az(€)" " + a1 (e)(n — 1)az(€)" " a(e)
therefore
02 -a:f% " a1(0)az(0)" " + a1(0)(n — 1)az(0)"2a3(0)

= &4(0) + (n - Day(0) = 2=

a1 (- 2522

2
—m(l—aﬂ—("—l)aﬂ)=ﬁ—_;(l—naﬂ)-

Since we took 8 > a we have

0>1-naf,

1
> —-.
af -
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Thus )
N > =,
(::;z“’")) ( :2*&‘””) 2y

Proof of Lemma 2: The drawing will illustrate some of the definitions in the

lemma.

Let {-,-) be the inner product defined by D (the minimal volume ellipsoid) and
|l - ]l2 the norm defined by this inner product.

If 3K N 1D = B then for some small § > 0 we would have (1+6§)1D C K and
therefore dK,D < 735 . Thus K N -,I;D is not empty.

Suppose that 0 ¢ conv (8K N 1D). Let u € conv (6K N1D) be the vector

with the minimal norm. Set p = ||ull2 and set e; such that u = —pe; (p > 0,
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ller]lz = 1). It is clear that under these definitions
4) Vz € conv <3K n %D) (z,u) > (u,u) = p2.

We will show that under these conditions we can find an ellipsoid E and § > 0
such that

(1+8 ECKCE
n

and therefore dK, D < 135 < n, which is a contradiction.
For every € > 0 set E, to be an ellipsoid with center at ee; (¢ will be determined
later):

n

def 1 2 1 2
cet I, - —— c <1}
E. = {=z| (1+6)2(.1:1 €) +1+€ E z; <1}

=2

By direct computation
(5) KcDCE, .

We will show that for some small € > 0 we have 1E, C int(K). In order to

prove that we need the next two sublemmas:

SUBLEMMA 2.1: Under the definition of u and p we have

1
PZ?-

SUBLEMMA 2.2: Forevery ¢ > 0 and for every z such thatz € %E, and ||z||z > ;1;

we have
/ 1
(x,el) Z —1+ l—n—z.

We'll prove these sublemmas after the proof of the lemma.

Combining Sublemma 2.1 and (4) we get

1 1 1 1
Vz € conv <6Kﬂ ;D) (z,e1) = —;(z,u) < —;(u,u) =-p< 7

Since %Eo = %D and the transformation € — E, is continuous we get that for
every u > 0 there is € > 0 such that

1 1
V:ceaKﬂ;E, (3,61)3—1—1—2--}-/1.
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We know that 1D C K; therefore if z € K then ||z||z > L; applying Sublemma
2.2 we get that

Ve € OKN1E, (r,e1) > —141/1- .
n n

Taking g > 0 such that —;15- +u<-144/1- ;‘-; we will get contradicting
inequalities for every z € 8K N L1 E, and thus

dKn lE, =
n
Since 0 € K and 0 € -};E, we must have
1E C int(K
~Ee Cin (K).
Hence for some small § > 0
1
1+ 6);E, C K.
Combining this with (5) we get
1
Q1 +6);E’¢ CKCE,

and therefore

n
< —_—
dK,D_1+6<n,

which contradicts the conditions of the lemma.

Therefore we must have

0 € conv (aKﬂ ;ll-D) . [ |

Proof of Sublemma 2.1: We know that

r r
1
(6) u= Za.-v.-, a; >0, Za.- =1, v;,€0KnN ;D.
=1 =1
Set w; = —nv;, we will prove that w; € K (we will use the same arguments as

in the proof of the theorem). For every common point v of the boundary of a
convex body K and a sphere contained in K we have

Vz e K (z,v) < (v,v).
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Soforevery: <r

?) (#,03) < (vi,0) = 5

and therefore L .
(z,wi) 2 (—n)n—z- =-

Then by Lemma 1 (w; is a unit vector)

sup(z,w;) > 1.
z€EK

Therefore there exists z; € K such that
(zi,wi) 21

but z; € K C D and ||wi|l2 = 1 and hence z; = w;.
So for every i, we get that w; € K.
Applying (7) for some w; € K we get that

1
(wj’vi) S ;2_
and hence
1
(8) (v, 03) 2 = .

Using (4) and (6) we get

(uyu) = za;(v;,u) > Za;(u,u) = {u,u)

i=1 i=1

and hence for every i <r

(vi,u) = (u,u) = p.

347

Thus all the v;’s are in the same n — 1 dimensional hyperplane. Using Carathéo-

dory’s theorem we can have r < n. Hence there exists some k such that a; > %

Using this k in the previous equality and using (6) we have

P2 = (vk,u) = (vszaivi) = zai(vk’vi)
i=1 =1

r

=ak(vk,vk)+ E ai(vk,vi)

i=1,i%#k
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using (8)
1 . 1
a5+ Y, ai-(-=)
ik n
1 1 1 1 1
=aE s plow=alnt s -
by our choice of k

Therefore

and the sublemma is proved. |

Proof of Sublemma 2.2: Let z be a vector such that ||z]jz > L and z € —,I,E,.
Set z; = (z,e;). Then
n 1
Z 2
Z'- > —2,

=1
1 A R 1
—  (xy — ¢ < -
(1+€)2($1 ¢) +1+e;z' - n?
Combining the last two inequalities we get

1,1,
-~ < .
1+e(n2 7)<

—e) +

1
(1+¢)? !
And by simple calculations

1 €
2
0 S $1+211+§+n—2—€.
Since 5 — ¢ < 0 we have

1
0 < xf+231+;§-

The roots of the z2 + 2z; + ;17 are —1 £ /1 — ;1;- 50 we have

/ 1
1 <-1- l—nl—2 or z;2-1+ 1——7—1—2-.

Since z € LE, we have z; > —1 so clearly

/ 1
Z12—1+ l—n_2

and the sublemma is proved. 1
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