THE ONLY CONVEX BODY WITH EXTREMAL DISTANCE FROM THE BALL IS THE SIMPLEX

ΒY

O. PALMON*

Department of Mathematics Tel Aviv University

ABSTRACT

We can extend the Banach-Mazur distance to be a distance between non-symmetric sets by allowing affine transformations instead of linear transformations. It was proved in [J] that for every convex body K we have $d(K, D) \leq n$. It is proved that if K is a convex body in \mathbb{R}^n such that d(K, D) = n, then K is a simplex.

For every two convex bodies K_1 and K_2 in \mathbb{R}^n we can define the distance between them as in [G]:

$$dK_1, K_2 \stackrel{\text{def}}{=} \inf \{ \alpha | \exists x, y \in \mathbb{R}^n, T \in GL(n) \ y + K_1 \subset T(x + K_2) \subset \alpha(y + K_1) \}$$

(this is an extension of the Banach-Mazur distance for the non-symmetric case). Clearly if K_1 is an affine transformation of K_2 then $dK_1, K_2 = 1$.

It was proved in [J] that for every convex body K we have $dK, D \leq n$ and that $dK, D \leq \sqrt{n}$ for every symmetric body K. Already in [J] it was noted that these results cannot be improved because the simplex S and the unit ball of l_1 satisfy

$$dS, D = n, \qquad dB_1, D = \sqrt{n}.$$

^{*} This article is an M.Sc. thesis written under the supervision of E. Gluskin and V.D. Milman at Tel Aviv University.

Partially supported by a G.I.F. grant.

Received May 24, 1990 and in revised form June 2, 1991

O. PALMON

In [MW] it was proved that every symmetric convex body K which satisfies $dK, D = \sqrt{n}$ has a section isometric to l_1^k where k is proportional to $\log n$. In the non-symmetric case we have more rigidity: the only extremal body is the simplex. Starting with the same approach as in [MW] we get stronger conditions on K and hence a stronger result.

THEOREM 1: If K is a convex body in \mathbb{R}^n such that dK, D = n then K is a simplex.

In order to prove this theorem we need the following two lemmas.

LEMMA 1: Let K be a convex body and set D such that D is the minimal volume ellipsoid containing K. Let \langle , \rangle be the inner product defined by D. Then for every unit vector u

$$\left(\sup_{x\in K}\langle x,u
ight
angle
ight)\cdot\left(-\inf_{x\in K}\langle x,u
ight
angle
ight)\geqrac{1}{n}.$$

Lemma 1 isn't new. It was proved by John ([J]) as a central part of the proof that $dK, D \leq n$ for every convex body K. We'll give here a simpler proof of the lemma which unfortunately doesn't give some additional information obtained in [J].

LEMMA 2: Let K be a convex body such that dK, D = n. Let D be the minimal volume ellipsoid containing K and 0 the center of D. Then

$$0 \in \operatorname{conv}\left(\frac{1}{n}D \cap \partial K\right).$$

The proofs of the lemmas are technical so we will prove first the theorem and prove the lemmas later.

Proof of the theorem: Set D to be the minimal volume ellipsoid containing K and \langle , \rangle the inner product defined by D.

From Lemma 2 there are v_1, \ldots, v_r and a_1, \ldots, a_r such that $||v_i||_2 = \frac{1}{n}, v_i \in \partial K$ and

$$0 = \sum_{i=1}^{r} a_i v_i, \quad a_i \ge 0, \quad \sum_{i=1}^{r} a_i = 1.$$

By Carathéodory's theorem we can assume that $r \leq n+1$.

Set $w_i = -nv_i$; we will prove that $K = conv\{w_1, \ldots, w_r\}$. For this purpose we will first prove that $w_i \in K$.

CONVEX BODIES

For every common point v of the boundary of a convex body K and a sphere contained in K we have

$$\forall x \in K \quad \langle x, v \rangle \leq \langle v, v \rangle.$$

So for every $i \leq r$

$$\forall x \in K \quad \langle x, v_i \rangle \leq \langle v_i, v_i \rangle = \frac{1}{n^2}.$$

Therefore

(1)
$$\forall i \leq r \ \forall x \in K \quad -\frac{1}{n} \leq \langle x, w_i \rangle.$$

We know that $||w_i||_2 = n \cdot ||v_i||_2 = 1$. Using Lemma 1 by setting $u = w_i$ we get

$$\left(-\left(-\frac{1}{n}\right)\right)\sup_{x\in K}\langle w_i,x\rangle \geq \frac{1}{n}.$$

Our set K is compact so we can find $z_i \in K$ such that

$$\langle z_i, w_i \rangle = \sup_{x \in K} \langle w_i, x \rangle \ge 1.$$

The vector w_i is a unit vector and $z_i \in K \subset D$, therefore by the Cauchy – Schwartz inequality we get

$$\langle z_i, w_i \rangle \leq \| z_i \|_2 \cdot \| w_i \|_2 \leq 1 \cdot 1 = 1.$$

Thus

$$\langle z_i, w_i \rangle = 1$$

and clearly $z_i = w_i$. This means that for every $i, w_i \in K$.

-

We know that

$$0=\sum_{i=1}^r a_i v_i$$

and therefore

$$\sum_{i=1}^r a_i w_i = -n \cdot 0 = 0.$$

For a fixed k we have

$$0 = \langle 0, w_k \rangle = \sum_{i=1}^r a_i \langle w_i, w_k \rangle = a_k \langle w_k, w_k \rangle + \sum_{i=1, i \neq k}^r a_i \langle w_i, w_k \rangle$$
$$= a_k + \sum_{i=1, i \neq k}^r a_i \langle w_i, w_k \rangle.$$

Since for every $i, w_i \in K$, we have by (1)

(2)
$$\langle w_i, w_k \rangle \geq -\frac{1}{n}.$$

Therefore

$$0 \ge a_k + \sum_{i=1, i \ne k}^r a_i(-\frac{1}{n}) = a_k + (1 - a_k) \cdot (-\frac{1}{n}) = \frac{n+1}{n}a_k - \frac{1}{n}$$

and this implies

$$(3) a_k \leq \frac{1}{n+1}.$$

We have $\sum_{i=1}^{r} a_i = 1, r \leq n+1$ and therefore

$$1 = \sum_{i=1}^{r} a_i \le r \frac{1}{n+1} \le \frac{n+1}{n+1} = 1,$$

hence

$$r = n + 1,$$
$$\forall k, \ a_k = \frac{1}{n+1}.$$

This means that (3) is an equality and therefore (2) is an equality.

So we have w_1, \ldots, w_{n+1} such that $||w_i||_2 = 1$ and for every $i \neq k$, $\langle w_i, w_k \rangle = -1/n$.

Set $S = \operatorname{conv}\{w_1, \ldots, w_{n+1}\}$. Then S is the simplex. K is convex and $w_i \in K$ therefore $S \subset K$. We only have to prove that $K \subset S$.

Let $x \notin S$; since $0 = \sum_{i=1}^{r} a_i w_i \in S$ there exists $0 < \lambda < 1$ such that $\lambda x \in \partial S$. Therefore λx is a convex combination of only *n* vectors in $\{w_1, \ldots, w_{n+1}\}$. Without loss of generality we can assume that these vectors are w_1, \ldots, w_n . Let

$$\lambda x = \sum_{i=1}^{n} b_i w_i, \qquad \sum_{i=1}^{n} b_i = 1.$$

Then

$$\langle x, w_{n+1} \rangle = \frac{1}{\lambda} \langle \lambda x, w_{n+1} \rangle = \frac{1}{\lambda} \sum_{i=1}^{n} b_i \langle w_i, w_{n+1} \rangle$$
$$= \frac{1}{\lambda} \sum_{i=1}^{n} b_i \cdot \left(-\frac{1}{n}\right) = \frac{1}{\lambda} \cdot \left(-\frac{1}{n}\right) < -\frac{1}{n}$$

340

and therefore by (1) $x \notin K$. So $K \subset S$ and we have

$$K = S.$$

We now prove our lemmas:

Proof of Lemma 1: Set

$$eta = \sup_{x \in K} \langle x, u
angle, \qquad lpha = - \inf_{x \in K} \langle x, u
angle.$$

We have

$$K \subset \{x \in D \mid -\alpha \leq \langle x, u \rangle \leq \beta \} \stackrel{\text{def}}{=} A.$$

We will find an ellipsoid E that contains A and therefore contains K. The volume of E will have to be greater than or equal to the volume of D (since D is the minimal volume ellipsoid containing K) and this will prove that $\alpha\beta \geq \frac{1}{n}$. The drawing will help understanding how this ellipsoid is defined.

We can assume $u = e_1$; we can also assume that $\beta > \alpha > 0$ (if $\alpha > \beta$ we can use -u instead of u; if $\alpha = \beta$ we can use the proof for $\beta + \delta$ instead of β for some small δ ; for $\alpha < 0$ use $\alpha = \delta$ for some small δ).

Set E_{ϵ} to be an ellipsoid with center at ϵe_1 for small $\epsilon > 0$:

$$E_{\varepsilon} = \{ x \mid a_1(\varepsilon)(x_1 - \varepsilon)^2 + a_2(\varepsilon) \sum_{i=2}^n x_i^2 \leq 1 \}$$

and set $a_1(\varepsilon), a_2(\varepsilon)$ to be such that the vectors

$$y = (\beta, \sqrt{1-\beta^2}, 0, \dots, 0),$$
$$z = (-\alpha, \sqrt{1-\alpha^2}, 0, \dots, 0)$$

are in ∂E_{ϵ} .

This means that $a_1(\varepsilon), a_2(\varepsilon)$ are determined by the following equations:

$$a_1(\varepsilon)(-\alpha-\varepsilon)^2 + a_2(\varepsilon)(1-\alpha^2) = 1,$$

$$a_1(\varepsilon)(\beta-\varepsilon)^2 + a_2(\varepsilon)(1-\beta^2) = 1.$$

By a simple calculation we can obtain

$$a_1(0) = a_2(0) = 1,$$

$$a_1'(0) = 2\frac{1-\alpha\beta}{\beta-\alpha},$$

$$a_2'(0) = -2\frac{\alpha\beta}{\beta-\alpha}.$$

We'll show that $A \subset E_{\varepsilon}$ for small enough $\varepsilon > 0$. Indeed for every $x \in A$ we have $||x||_2 \leq 1$ and $-\alpha \leq x_1 \leq \beta$. Hence

$$\begin{aligned} a_1(\varepsilon)(x_1-\varepsilon)^2 + a_2(\varepsilon) \sum_{i=2}^n x_i^2 &= a_1(\varepsilon)(x_1-\varepsilon)^2 + a_2(\varepsilon)(\|x\|_2^2 - x_1^2) \\ &\leq a_1(\varepsilon)(x_1-\varepsilon)^2 + a_2(\varepsilon)(1-x_1^2). \end{aligned}$$

Define

$$a_1(\varepsilon)(t-\varepsilon)^2 + a_2(\varepsilon)(1-t) \stackrel{\text{def}}{=} \ell_{\varepsilon}(t)$$

 $\ell_{\epsilon}(t)$ is a polynomial of degree 2. $a_1(\epsilon)$ and $a_2(\epsilon)$ were chosen so that

$$\ell_{\boldsymbol{\epsilon}}(-\alpha) = \ell_{\boldsymbol{\epsilon}}(\beta) = 1.$$

Differentiating $\ell_{\varepsilon}(0)$ with respect to ε we get

$$\left.\frac{\partial \ell_{\epsilon}(0)}{\partial \epsilon}\right|_{\epsilon=0} = a_{2}'(0) < 0.$$

Hence for small $\varepsilon > 0$ we get that $\ell_{\varepsilon}(0) < \ell_0(0) = 1$. Thus for every $-\alpha \le t \le \beta$ we have $\ell_{\varepsilon}(t) \le 1$ and hence

$$a_1(\varepsilon)(x_1-\varepsilon)^2+a_2(\varepsilon)\sum_{i=2}^n x_i^2\leq \ell_{\varepsilon}(x_1)\leq 1.$$

This proves $A \subset E_{\epsilon}$.

Since $K \subset A \subset E_{\varepsilon}$ and D is the minimal volume ellipsoid containing K we have

$$\operatorname{vol}(D) \leq \operatorname{vol}(E_{\epsilon})$$

and therefore

$$1 \geq \left(\frac{\operatorname{vol}(D)}{\operatorname{vol}(E_{\varepsilon})}\right)^2 = a_1(\varepsilon) \cdot a_2(\varepsilon)^{n-1} \stackrel{\text{def}}{=} v(\varepsilon).$$

Since v(0) = 1 we have

$$\left.\frac{\partial v(\varepsilon)}{\partial \epsilon}\right|_{\varepsilon=0} \leq 0.$$

We can calculate

$$\frac{\partial v(\varepsilon)}{\partial \epsilon} = a_1'(\varepsilon)a_2(\varepsilon)^{n-1} + a_1(\varepsilon)(n-1)a_2(\varepsilon)^{n-2}a_2'(\varepsilon)$$

therefore

$$0 \ge \left. \frac{\partial v(\varepsilon)}{\partial \epsilon} \right|_{\epsilon=0} = a_1'(0)a_2(0)^{n-1} + a_1(0)(n-1)a_2(0)^{n-2}a_2'(0)$$
$$= a_1'(0) + (n-1)a_2'(0) = 2\frac{1-\alpha\beta}{\beta-\alpha} + (n-1)\cdot\left(-2\frac{\alpha\beta}{\beta-\alpha}\right)$$
$$= \frac{2}{\beta-\alpha}\left(1-\alpha\beta-(n-1)\alpha\beta\right) = \frac{2}{\beta-\alpha}\left(1-n\alpha\beta\right).$$

Since we took $\beta > \alpha$ we have

$$0 \ge 1 - n\alpha\beta,$$
$$\alpha\beta \ge \frac{1}{n}.$$

Thus

$$\left(\sup_{x\in K}\langle x,u\rangle\right)\cdot\left(-\inf_{x\in K}\langle x,u\rangle\right)\geq \frac{1}{n}.$$

Proof of Lemma 2: The drawing will illustrate some of the definitions in the lemma.

Let $\langle \cdot, \cdot \rangle$ be the inner product defined by D (the minimal volume ellipsoid) and $\|\cdot\|_2$ the norm defined by this inner product.

If $\partial K \cap \frac{1}{n}D = \emptyset$ then for some small $\delta > 0$ we would have $(1+\delta)\frac{1}{n}D \subset K$ and therefore $dK, D \leq \frac{n}{1+\delta}$. Thus $\partial K \cap \frac{1}{n}D$ is not empty.

Suppose that $0 \notin \operatorname{conv} \left(\partial K \cap \frac{1}{n}D\right)$. Let $u \in \operatorname{conv} \left(\partial K \cap \frac{1}{n}D\right)$ be the vector with the minimal norm. Set $\rho = ||u||_2$ and set e_1 such that $u = -\rho e_1$ ($\rho > 0$,

344

 $||e_1||_2 = 1$). It is clear that under these definitions

(4)
$$\forall x \in \operatorname{conv}\left(\partial K \cap \frac{1}{n}D\right) \quad \langle x, u \rangle \geq \langle u, u \rangle = \rho^2.$$

We will show that under these conditions we can find an ellipsoid E and $\delta > 0$ such that

$$(1+\delta)\frac{1}{n}E\subset K\subset E$$

and therefore $dK, D \leq \frac{n}{1+\delta} < n$, which is a contradiction.

For every $\varepsilon > 0$ set E_{ε} to be an ellipsoid with center at εe_1 (ε will be determined later):

$$E_{\varepsilon} \stackrel{\text{def}}{=} \{x \mid \frac{1}{(1+\varepsilon)^2} (x_1-\varepsilon)^2 + \frac{1}{1+\varepsilon} \sum_{i=2}^n x_i^2 \leq 1\}.$$

By direct computation

$$(5) K \subset D \subset E_{\epsilon}$$

We will show that for some small $\varepsilon > 0$ we have $\frac{1}{n}E_{\varepsilon} \subset int(K)$. In order to prove that we need the next two sublemmas:

SUBLEMMA 2.1: Under the definition of u and ρ we have

$$\rho \geq \frac{1}{n^2}.$$

SUBLEMMA 2.2: For every $\varepsilon > 0$ and for every x such that $x \in \frac{1}{n}E_{\varepsilon}$ and $||x||_2 \ge \frac{1}{n}$ we have

$$\langle x, e_1 \rangle \geq -1 + \sqrt{1 - \frac{1}{n^2}}.$$

We'll prove these sublemmas after the proof of the lemma.

Combining Sublemma 2.1 and (4) we get

$$orall x \in \operatorname{conv}\left(\partial K \cap rac{1}{n}D
ight) \quad \langle x, e_1
angle = -rac{1}{
ho} \langle x, u
angle \leq -rac{1}{
ho} \langle u, u
angle = -
ho \leq -rac{1}{n^2}.$$

Since $\frac{1}{n}E_0 = \frac{1}{n}D$ and the transformation $\varepsilon \mapsto E_{\varepsilon}$ is continuous we get that for every $\mu > 0$ there is $\varepsilon > 0$ such that

$$\forall x \in \partial K \cap \frac{1}{n} E_{\epsilon} \quad \langle x, e_1 \rangle \leq -\frac{1}{n^2} + \mu$$

We know that $\frac{1}{n}D \subset K$; therefore if $x \in \partial K$ then $||x||_2 \ge \frac{1}{n}$; applying Sublemma 2.2 we get that

$$orall x \in \partial K \cap rac{1}{n} E_{\epsilon} \quad \langle x, e_1
angle \geq -1 + \sqrt{1 - rac{1}{n^2}}.$$

Taking $\mu > 0$ such that $-\frac{1}{n^2} + \mu < -1 + \sqrt{1 - \frac{1}{n^2}}$ we will get contradicting inequalities for every $x \in \partial K \cap \frac{1}{n} E_{\epsilon}$ and thus

$$\partial K \cap \frac{1}{n} E_{\varepsilon} = \emptyset.$$

Since $0 \in K$ and $0 \in \frac{1}{n}E_{\epsilon}$ we must have

$$\frac{1}{n}E_{\boldsymbol{\epsilon}}\subset \operatorname{int}(K).$$

Hence for some small $\delta > 0$

$$(1+\delta)\frac{1}{n}E_{\varepsilon}\subset K.$$

Combining this with (5) we get

$$(1+\delta)\frac{1}{n}E_{\epsilon}\subset K\subset E_{\epsilon}$$

and therefore

$$dK, D \leq \frac{n}{1+\delta} < n,$$

which contradicts the conditions of the lemma.

Therefore we must have

$$0 \in \operatorname{conv}\left(\partial K \cap \frac{1}{n}D\right). \quad \blacksquare$$

Proof of Sublemma 2.1: We know that

(6)
$$u = \sum_{i=1}^{r} a_i v_i, \quad a_i \ge 0, \quad \sum_{i=1}^{r} a_i = 1, \quad v_i \in \partial K \cap \frac{1}{n} D.$$

Set $w_i = -nv_i$, we will prove that $w_i \in K$ (we will use the same arguments as in the proof of the theorem). For every common point v of the boundary of a convex body K and a sphere contained in K we have

$$\forall x \in K \quad \langle x, v \rangle \leq \langle v, v \rangle.$$

So for every $i \leq r$

(7)
$$\langle x, v_i \rangle \leq \langle v_i, v_i \rangle = \frac{1}{n^2}$$

and therefore

$$\langle x, w_i \rangle \geq (-n) \frac{1}{n^2} = -\frac{1}{n}.$$

Then by Lemma 1 (w_i is a unit vector)

$$\sup_{x \in K} \langle x, w_i \rangle \ge 1.$$

Therefore there exists $z_i \in K$ such that

$$\langle z_i, w_i \rangle \geq 1$$

but $z_i \in K \subset D$ and $||w_i||_2 = 1$ and hence $z_i = w_i$.

So for every i, we get that $w_i \in K$.

Applying (7) for some $w_j \in K$ we get that

$$\langle w_j, v_i \rangle \leq \frac{1}{n^2}$$

and hence

(8)
$$\langle v_j, v_i \rangle \geq -\frac{1}{n^3}.$$

Using (4) and (6) we get

$$\langle u, u \rangle = \sum_{i=1}^{r} a_i \langle v_i, u \rangle \ge \sum_{i=1}^{r} a_i \langle u, u \rangle = \langle u, u \rangle$$

and hence for every $i \leq r$

$$\langle v_i, u \rangle = \langle u, u \rangle = \rho^2.$$

Thus all the v_i 's are in the same n-1 dimensional hyperplane. Using Carathéodory's theorem we can have $r \leq n$. Hence there exists some k such that $a_k \geq \frac{1}{n}$. Using this k in the previous equality and using (6) we have

$$\rho^{2} = \langle v_{k}, u \rangle = \langle v_{k}, \sum_{i=1}^{r} a_{i} v_{i} \rangle = \sum_{i=1}^{r} a_{i} \langle v_{k}, v_{i} \rangle$$
$$= a_{k} \langle v_{k}, v_{k} \rangle + \sum_{i=1, i \neq k}^{r} a_{i} \langle v_{k}, v_{i} \rangle$$

using (8)

$$\geq a_k \frac{1}{n^2} + \sum_{i=1, i \neq k}^r a_i \cdot \left(-\frac{1}{n^3}\right)$$
$$= a_k \frac{1}{n^2} - \frac{1}{n^3} (1 - a_k) = a_k \left(\frac{1}{n^2} + \frac{1}{n^3}\right) - \frac{1}{n^3}$$

by our choice of k

$$\geq \frac{1}{n}(\frac{1}{n^2} + \frac{1}{n^3}) - \frac{1}{n^3} = \frac{1}{n^4}.$$

Therefore

$$\rho \geq \frac{1}{n^2}$$

1

and the sublemma is proved.

Proof of Sublemma 2.2: Let x be a vector such that $||x||_2 \ge \frac{1}{n}$ and $x \in \frac{1}{n}E_{\epsilon}$. Set $x_i = \langle x, e_i \rangle$. Then

$$\sum_{i=1}^n x_i^2 \geq \frac{1}{n^2},$$
$$\frac{1}{(1+\varepsilon)^2} (x_1 - \varepsilon)^2 + \frac{1}{1+\varepsilon} \sum_{i=2}^n x_i^2 \leq \frac{1}{n^2}.$$

Combining the last two inequalities we get

$$\frac{1}{(1+\varepsilon)^2}(x_1-\varepsilon)^2 + \frac{1}{1+\varepsilon}(\frac{1}{n^2}-x_1^2) \leq \frac{1}{n^2}$$

And by simple calculations

$$0 \leq x_1^2 + 2x_1 + \frac{1}{n^2} + \frac{\varepsilon}{n^2} - \varepsilon.$$

Since $\frac{\varepsilon}{n^2} - \varepsilon \leq 0$ we have

$$0 \leq x_1^2 + 2x_1 + \frac{1}{n^2}.$$

The roots of the $x_1^2 + 2x_1 + \frac{1}{n^2}$ are $-1 \pm \sqrt{1 - \frac{1}{n^2}}$ so we have

$$x_1 \leq -1 - \sqrt{1 - \frac{1}{n^2}}$$
 or $x_1 \geq -1 + \sqrt{1 - \frac{1}{n^2}}$.

Since $x \in \frac{1}{n}E_{\epsilon}$ we have $x_1 \geq -\frac{1}{n}$ so clearly

$$x_1 \ge -1 + \sqrt{1 - \frac{1}{n^2}}$$

and the sublemma is proved.

348

CONVEX BODIES

ACKNOWLEDGEMENT: The author would like to thank E. Gluskin and V.D. Milman for long discussions and their help in editing the manuscript.

References

- [G] B. Grünbaum, Measures of symmetry for convex sets, Proceedings of Symposia in Pure Mathematics. Convexity VII (1963), 233-270.
- [J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, New York, 1948, pp. 187-204.
- [MW] V.D. Milman and H. Wolfson, Minkowski spaces with extremal distance from the Euclidean space, Isr. J. Math. 29 (1978), 113-131.